Nitrogen in Minnesota Surface Waters

Conditions · Sources · Trends · Reductions

Dave Wall

Report finalized June 2013

15 authors and coauthors

70+ others acknowledged

20 chapters

250+ maps, graphs, diagrams

20-pg Executive Summary

Prompted study

Legislative directive

Gulf of Mexico hypoxia task force action plan

Why we did this study

Minnesota waters

Aquatic life toxicity

 MPCA developing standards (2015)

Drinking water in streams

 15 streams exceed cold water standard

Downstream waters

Gulf of Mexico Hypoxia and Lake Winnipeg

Nutrient Reduction Strategy (2013)

Iowa Rivers

Why do we care about nitrogen in surface water?

High concentration harms aquatic life

Contributes to hypoxia in Gulf of Mexico

Can exceed drinking water standards

Nitrate is dominant form in High N rivers

Nitrogen forms in three rivers

Discussion areas

Conditions

Sources

Trends

Reductions

Conditions

Sources

Trends

Reductions

Cropland Groundwater Pathway

Cropland Tile Drainage Pathway

Statewide nitrogen sources to surface waters

N source estimates checked with:

- Water Monitoring
- 2. Literature review MN and Upper Midwest
- Statistical and non-statistical analyses comparing land uses and watershed N levels
- 4. U.S. Geological Survey Modeling (SPARROW)
- Modeling in Minnesota River Basin (HSPF)
- 6. Sensitivity Analyses

Comparing nitrogen loads

Dry year

Ave. year

Wet year

Nitrogen sources to surface waters

Nitrogen source differences between basins

Sources to soils

Note: Do not equate with sources to waters

Conditions

Sources

Trends

Reductions

1976 to 2010 52 River Monitoring Sites

Nitrate Concentrations

Flow Adjusted

- Increase
- Decrease
- No trend

Recent Trends 52 River Monitoring Sites

Conditions

Sources

Trends

Reductions

Percent nitrogen reduction in treated area

Percent N reduction to waters statewide

Spreadsheet – N reduction scenarios

Statewide

Corn grain & silage acres receiving the target N rate

Fall N applications switched to spring, % of fall-app. acres

Fall N switch to split spring/sidedressing, % of fall acres

Riparian buffers

Restored wetlands

Tile line bioreactors

Controlled drainage

Corn &soybean acres planted w/cereal rye cover crop

Marginal land perennial crop replacing corn & soybean

Average weather - all of preplant N is available

29.685	million acres in v	million acres in watershed		
1 % suitable	% adoption	% treated	% treated, combined	
26.2%	6 90%	23.6%	23.6%	
10.5%	45%	4.7%	4.7%	
10.5%	45%	4.7%	4.7%	
5.8%	70%	4.0%	4.0%	
5.3%	6 50%	2.7%	2.7%	
4.5%	6 20%	0.9%	0.9%	
4.5%	6 50%	2.3%	2.3%	
50.1%	% 10%	5.0%	4.6%	
5.8%	% 10%	0.6%	0.3%	

Minnesota Watershed Nitrogen Reduction Planning Tool

William Lazarus Department of Applied Economics University of Minnesota

David Mulla Department of Soil, Water, and Climate University of Minnesota

David Wall Minnesota Pollution Control Agency

Reducing cropland nitrogen losses to surface waters statewide

Cost estimates subject to change with fluctuating markets

Nitrogen reduction potential and costs vary by watershed

Nitrogen reduction potential and costs vary by watershed

Reducing nitrogen in wastewater discharges

Conclusions

1

High nitrate in Southern Minnesota – cropland nitrate leaching to tile lines and groundwater

2

Concentrations increasing in Mississippi R since mid-1970's Minnesota River high – may be stabilizing/decreasing

Can reduce nitrogen losses to rivers:

- 15-20% through fertilizer mgmt + tile water treatment
- More vegetative cover needed for further reductions

Some continuing work

Nitrogen Fertilizer Management Plan	2013
Agricultural Water Quality Certification Pilots	2013
State-level Nutrient Reduction Strategy	2013
River nitrate standards	2015

Questions?? www.pca.state.mn.us/6fwc9hw

Dave Wall 651.757.2806